
The ARC point is provided as an easy way to approximate a semi-circular (or semi-oval) arc
without doing annoying manual calculations to derive the needed spline points. The ARC
point specifies the center of the circle (or oval), and the rendering software calculates the
appropriate spline points.

An ARC point must always come between two hard (i.e. ordinary) polygon corners of one
polygon loop. Due to the way the code is written, an ARC point must not be the first point of
its polygon loop, but may be the last point.

The point-in-polygon code uses an ARC point to interpolate two spline corners, each of
which is .4142 of the way from a hard corner, to the intersection of the tangent lines as
defined by the ARC point:

hard corner

ARC point

hard corner

The distances from the ARC point to the two hard corners do not have to be equal (or even
approximately equal), and everything will still line up perfectly.

Restriction: Don’t use ARC to do angle sweeps substantially greater than 90°. (The above
illustration is a good, ballpark representation of the largest angle that should be attempted.)
If you need bigger sweeps, break them up into smaller ones. The reason for this restriction is
that as the angle increases from 90° to 180°, the tangent-intersection point shoots off to
infinity, causing massive distortion of the shape, and total failure at exactly 180°:

The polygon data provides the two hard corners
(black) and the ARC point (white).

Two spline points (blue) are interpolated by moving
.4142 down the tangents (magenta) from the hard
corners toward the intersection of the tangents.

One hard corner (green) is interpolated by averaging
the two (blue) spline points.

The ARC and ARC_AUTO Points

Note: The value .4142 (actually the square root of two, minus one) is used because it
delivers nearly perfect circular (or oval) arcs for 90° angles, and good results for other angles
too.

WRONG — The tangents do
not intersect, or do so at an
immense distance.

CORRECT — Creates a very
oval-like curve of the exact,
desired dimensions.

1 2 3 1 2,4 5

3

The ARC_AUTO point works exactly like the ARC point, except that it specifies no arc-center
coordinates. Instead of deriving the tangent lines from a specified center-point, the tangent
lines are simply assumed to be extensions of the hard-corner-specified line segments that
come before and after the ARC_AUTO constant. For this reason, there must be two
consective hard corners before, and two after, ARC_AUTO. Example:

1

2

54

3 = ARC_AUTO

As with ARC, it is not recommended to go substantially over 90° with ARC_AUTO. And due
to the way the code is written, ARC_AUTO must not be in the place of the first or second
point of its polygon loop, but may be in the place of the last or second-to-the-last point.

Be aware that just because an arc has two hard corners on both sides doesn’t necessarily
mean that ARC_AUTO should be used. For example, in this case, ARC must be used:

1

2
5

4

3

Important: Keep in mind that every font character in this TSG project is assumed to have its
left edge lined up with the leftmost X position (-16, -1, or 0, depending on the font), and that
both the left-edge alignment and the calculated width of the character are based on hard
corners only, not spline corners, arc centers, or the horizontal reach of curves.

