
Bevel is created by
checking the test point
against four-sided polygons
that go into the main
polygon by a fixed,
perpendicular distance.

DIRECTION: For this to
work, all characters must
be traced in the same
direction (clockwise), and
all holes must be traced in
the opposite direction
(counter-clockwise).

(In the second picture,
spline curves are being
simulated with circular
curves.)

Bevel polygons cannot be
constructed just once on
app launch, because the
bevels need to be uniformly
sized across a logo that has
differently sized and
stretched characters.

Note that the large, interior
area enclosed by the bevel
polygons does not need to
be constructed as a
polygon, because we don’t
even check the bevel
polygons until we’ve
already determined that the
test point is inside the
enclosing, character shape.

If found to be inside a bevel
polygon, the test point
should be colored according
to the slope at that point.

(This does not necessarily

(This does not necessarily
need to be related to the
side-extrusion vanishing
point.)

Third picture: If this
situation ever occurs, the
bevel corner shoots off to
infinity. To avoid this, the
bevel algorithm should
check for division by zero
(or whatever math anomoly
results in this situation),
and put the bevel corner
directly on the polygon’s
corner — the width of the
bevel will constrict to zero
there. (Hopefully no
character will ever do this!)

Fourth picture: Where two
segments of the polygon
meet, make parallel copies
of each line (blue and red),
then meet the bevel areas
where the two lines
intersect (green).

Fifth picture: Same as
fourth picture, but with
bevel on outside of angle.

Sixth picture: In theory,
when a line segment meets
a spline in a non-colinear
manner, the spline-point
may change signficantly
(from red dot to pink dot).
In practice, this is too
complicated, and the bevel
is very small — therefore
the seventh picture
illustrates how it will be
done.

